Prediction of ultimate bearing capacity of shallow foundation on granular soils using Imperialist Competitive Algorithm based ANN

  • سال انتشار: 1398
  • محل انتشار: مجله بین المللی تعامل سازه و خاک، دوره: 4، شماره: 1
  • کد COI اختصاصی: JR_SSI-4-1_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 575
دانلود فایل این مقاله

نویسندگان

Reza Dinarvand

Master of Civil Engineering, Imam Khomeini International University, Iran

Mahdi Sadeghian

Master of Civil Engineering, Imam Khomeini International University, Iran

Reza Einolvand

Associate Degree of Civil Engineering, Islamic Azad University of Dezful, Iran

چکیده

The prediction of the ultimate bearing capacity of shallow foundation is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate the ultimate bearing capacity of shallow foundation, including the artificial intelligence methods. In recent years, optimization algorithms have been used to minimize neural network errors, such as Colony algorithm, Genetic algorithm, Imperialist competitive algorithm. In this research, artificial neural networks based on imperialist competitive algorithm (ICA) were used and their results were compared with other methods. The results of laboratory shallow foundation test on granular soils with parameters containing length, buried depth, L/B ratio, density and internal friction angle of soil were used for training and testing of the model. The results showed that ICA-based artificial neural networks predict the final bearing capacity of the shallow foundations with a correlation coefficient of 0.9908 for training data and 0.9882 for testing data. Also, the results of the model showed the superiority of ICA-based artificial neural networks compared to back-propagation neural networks and methods of Meyerhof, Vesic and Hansen methods

کلیدواژه ها

Bearing capacity,Shallow foundation,Granular soil,Artificial neural network,Imperialist competition algorithm,

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.