ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Finding an optimal set of classification exemplars (OSCE) by using integer linear programming

سال انتشار: 1398
کد COI مقاله: ICIKT10_066
زبان مقاله: انگلیسیمشاهد این مقاله: 158
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

خرید و دانلود فایل مقاله

متن کامل (فول تکست) این مقاله منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد.

مشخصات نویسندگان مقاله Finding an optimal set of classification exemplars (OSCE) by using integer linear programming

Jan Kybic - Faculty of Electrical Engineering Czech Technical University Prauge, Czech Republic
Mohammad Khodadadi Azadboni - Faculty of Electrical Engineering Czech Technical University Prauge, Czech Republic

چکیده مقاله:

This paper describes how to classify a data set by using an optimum set of exemplar to determine the label of an instance among a set of data for solving classification run time problem in large data set. The goal of this paper is to find a way to speed up the classification run time by choosing a set of exemplars. We used linear programming problems to optimize a hinge loss cost function, in which estimated label and actual label is used to train the classification. Estimated label is calculated by measuring Euclidean distance of a query point to all of its nearest neighbors which is multiplied by some weights and an actual label value. To select some exemplars with none zero weights. Two solution is suggested to have a better result. One of them is choosing smaller neighborhood or k closer neighbors. The other one is using LP and thresholding to select some maximum of achieved unknown variable which are more significant in finding a set of exemplar. Also, there is trade off between run time classifier and accuracy. In large data set, OSCE classifier has better performance than ANN and K-NN cluster

کلیدواژه ها:

Integer linear programming (ILP), linear pro- gramming (LP), exemplar, hinge loss function

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/982300/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Kybic, Jan and Khodadadi Azadboni, Mohammad,1398,Finding an optimal set of classification exemplars (OSCE) by using integer linear programming,دهمین کنفرانس فناوری اطلاعات و دانشIKT2019,تهران,,,https://civilica.com/doc/982300

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398, Kybic, Jan؛ Mohammad Khodadadi Azadboni)
برای بار دوم به بعد: (1398, Kybic؛ Khodadadi Azadboni)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی