Detecting Active Bot Networks Based on DNS Traffic Analysis

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 362

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACET-5-3_001

تاریخ نمایه سازی: 20 آذر 1398

چکیده مقاله:

Abstract—One of the serious threats to cyberspace is the Bot networks or Botnets. Bots are malicious software that acts as a network and allows hackers to remotely manage and control infected computer victims. Given the fact that DNS is one of the most common protocols in the network and is essential for the proper functioning of the network, it is very useful for monitoring, detecting and reducing the activity of the Botnets. DNS queries are sent in the early stages of the life cycle of each Botnet, so infected hosts are identified before any malicious activity is performed. Because the exchange of information in the network environment and the volume of information is very high, Storing and indexing this massive data requires a large database. By using the DNS traffic analysis, we try to identify the Botnets. We used the data generated from the network traffic and information of known Botnets with the Splunk platform to conduct data analysis to quickly identify attacks and predict potential dangers that could arise. The analysis results were used in tests conducted on real network environments to determine the types of attacks. Visual IP mapping was then used to determine actions that could be taken. The proposed method is capable of recognizing known and unknown Bots.

نویسندگان

Zahra Nafarieh

Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Ebrahim Mahdipur

Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Haj Hamid Haj Seyed Javadi

Department of Mathematics and Computer Science, Shahed University, Tehran, Iran..

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alomari, E., Manickam, S., Gupta, B.B., Karuppayah, S. and Alfaris, ...
  • Lu, W., Rammidi, G. and Ghorbani, A.A., 2011. Clustering botnet ...
  • Almomani, A., Gupta, B.B., Wan, T.C., Altaher, A. and Manickam, ...
  • Al-Momani, A., Wan, T.C., Al-Saedi, K., Altaher, A., Ramadass, S., ...
  • Alieyan, K., ALmomani, A., Manasrah, A. and Kadhum, M.M., 2017. ...
  • Zeidanloo, H.R., Shooshtari, M.J.Z., Amoli, P.V., Safari, M. and Zamani, ...
  • Karim, A., Salleh, R.B., Shiraz, M., Shah, S.A.A., Awan, I. ...
  • Alieyan, K., ALmomani, A., Manasrah, A. and Kadhum, M.M., 2017. ...
  • Stevanovic, M., Pedersen, J.M., D’Alconzo, A. and Ruehrup, S., 2017. ...
  • Zhao, G., Xu, K., Xu, L. and Wu, B., 2015. ...
  • Das, S., Mukhopadhyay, A. and Shukla, G.K., 2013, January. i-HOPE ...
  • Bhandari, A., Sangal, A.L. and Kumar, K., 2016. Characterizing flash ...
  • Woodie, A., 2015. Why Gartner dropped big data off the ...
  • Marty, R., 2009. Applied security visualization (p. 552). Upper Saddle ...
  • Choi, H. and Lee, H., 2012. Identifying botnets by capturing ...
  • Gu, G., Yegneswaran, V., Porras, P., Stoll, J. and Lee, ...
  • Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., ...
  • Huang, C.Y., 2013. Effective bot host detection based on network ...
  • Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N. and Dagon, ...
  • Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., ...
  • Perdisci, R., Corona, I. and Giacinto, G., 2012. Early detection ...
  • Bilge, L., Sen, S., Balzarotti, D., Kirda, E. and Kruegel, ...
  • Kang, B.B.H., 2011. DNS-based botnet detection. In Encyclopedia of Cryptography ...
  • نمایش کامل مراجع