Injection Molding Parameters Optimization through a Hybrid System of Artificial Neural Network and Genetic Algorithm
- سال انتشار: 1389
- محل انتشار: هجدهمین کنفرانس سالانه مهندسی مکانیک
- کد COI اختصاصی: ISME18_237
- زبان مقاله: انگلیسی
- تعداد مشاهده: 2191
نویسندگان
M.S. student, Urmia University
Assistant Professor, Urmia University
Associate Professor, Urmia University
M.S. student, Urmia University
چکیده
Nowadays competitive conditions force us to faster and cheaper production with a higher quality. The use of Computer-aided analysis and engineering softwares such as MoldFlow Plastic Insight (MPI) could help engineers to have initial knowledge about the plastic injection processes such as injection, packing, cooling, ejection and process/part quality control that will be undertaken for the parts, which are designed to beproduced by plastic injection method. In this study, MPI was applied to generate responses such as average volumetric shrinkage (shrinkage) and in-mold pressure (pressure). Process parameters such as mold temperature, melt temperature and gate location, are considered as model variables. The objective of this research is to obtain an optimal process parameters corresponding to minimum shrinkage and pressure. At first Taguchi method is used to solve the minimizing problems, separately. Then two three-layer Back- Propagation (BP) Artificial Neural Networks (ANN) are used to modeling the relationship between processing parameters and part shrinkage and also pressure, separately. A couple of ANN and Genetic Algorithm (GA) is used to solve the two objective problem and to obtain the optimal parameter values and set of model variables leading to minimum shrinkage and pressure. Finally, the optimal set of variables was compared with sets that obtained from Taguchi method analyze for minimum shrinkage and minimum pressure, separately. This compare proves that couple of ANN/GA has reasonable performance and also shows that use of this hybrid method enhances optimization power in optimization of process parameters.کلیدواژه ها
Plastic Injection Molding, optimization,Artificial Neural Network, Genetic Algorithm, Taguchimethodمقالات مرتبط جدید
- بهینه سازی مدیریت انرژی در ریزشبکه ها با استفاده از الگوریتم های هوش مصنوعی
- مبانی، کاربردها و چالشهای یادگیری مشارکتی و تحلیل تجربی و مقایسه ابزارهای یادگیری فدرالی در پیاده سازی مدلهای یادگیری ماشین
- راهکارهای مبتنی بر هوش مصنوعی برای بهره وری انرژی در تولید سیمان: یک بررسی جامع
- معماری اینترنت اشیا مبتنی بر هوش مصنوعی در مدیریت انرژی هوشمند
- سیستم های EMS/BMS در ساختمان های ZEB و نمونههای اجرا شده آن در سطح جهانی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.