Delineation of alteration zones based on kriging, artificial neural networks, and concentration–volume fractal modelings in hypogene zone of Miduk porphyry copper deposit, SE Iran

  • سال انتشار: 1398
  • محل انتشار: مجله معدن و محیط زیست، دوره: 10، شماره: 3
  • کد COI اختصاصی: JR_JMAE-10-3_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 430
دانلود فایل این مقاله

نویسندگان

O. Gholampour

Department of Mining and Metallurgy Engineering, Amirkabir University of technology (Tehran Polytechnic), Tehran, Iran

A. Hezarkhani

Department of Mining and Metallurgy Engineering, Amirkabir University of technology (Tehran Polytechnic), Tehran, Iran

A. Maghsoudi

Department of Mining and Metallurgy Engineering, Amirkabir University of technology (Tehran Polytechnic), Tehran, Iran

M. Mousavi

National Iranian Copper Industries Company, Miduk Mine, Kerman, Iran

چکیده

This paper presents a quantitative modeling for delineating alteration zones in the hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on the core drilling data. The main goal of this work was to apply the Ordinary Kriging (OK), Artificial Neural Networks (ANNs), and Concentration-Volume (C-V) fractal modelings on Cu grades to separate different alteration zones. Anisotropy was investigated and modeled based on calculating the experimental semi-variograms of Cu value, and then the main variography directions were identified and evaluated. The block model of Cu grade was generated using the kriging and ANN modelings followed by log-log plots of the C-V fractal modeling to determine the Cu threshold values used in delineating the alteration zones. Based on the correlation between the geological models and the results derived via C-V fractal modeling, Cu values less than 0.479% resulting from kriging modeling had more overlapped voxels with the phyllic alteration zone by an overall accuracy (OA) of 0.83. The spatial correlation between the potassic alteration zone in a 3D geological model and the high concentration zones in the C-V fractal model showed that Cu values between 0.479% and 1.023%, resulting from kriging modeling, had the best overall accuracy (0.78). Finally, based on the correlation between classes in the binary geological and fractal models of the hypogene zone, this research work showed that kriging modeling could delineate the phyllic (with lower grades) and potassic (with higher grades) alteration zones more effectively compared with ANNs.

کلیدواژه ها

Concentration–Volume (C–V) Fractal Model, Ordinary Kriging (OK), artificial neural networks (ANNs), Miduk Porphyry Copper Deposit, Alteration Zones

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.