Prediction of Polycyclic Aromatic Hydrocarbons Solubility in Supercritical Carbon Dioxide Using Artificial Neural Network (ANN) Model
- سال انتشار: 1397
- محل انتشار: دومین کنفرانس بین المللی فناوری های نوین در علوم
- کد COI اختصاصی: CMTS02_227
- زبان مقاله: انگلیسی
- تعداد مشاهده: 629
نویسندگان
Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
چکیده
The polycyclic aromatic hydrocarbons solubility in supercritical carbon dioxide is crucial in a wide range of applications such as extraction from polluted soils and catalytic hydrogenation in petrochemical industry [1]. In this paper an ANN model with 7 neurons in the hidden layer and 4 input properties (temperature, pressure, critical pressure, density and acentric factor) is proposed for the prediction of polycyclic aromatic hydrocarbons solubility in supercritical carbon dioxide. A total amount of 610 data for 11 polycyclic aromatic compounds were used for training and testing the network model. 75% of the whole data (458 data) allocated for training part and the rest (152 data) used as test data. Since the values of the solubility are near to zero, logarithmic data for solubility were used for analyses. Average absolute deviation (AARD) is selected as the criteria for the accuracy of the model and is calculated as follows: ????(%)= 100?∙Σ|??????−?????|???????=1 (1) Results show that the ANN model has an average absolute deviation (AARD) of 1.06%, 1.08%, and 1.01% for all, train and test data respectively. As can be seen in figure 1, the predicted values of proposed model are close to experimental data, Therefore ANN can be an appropriate tool for predicting polycyclic aromatic hydrocarbons solubility in supercritical carbon dioxide.کلیدواژه ها
ANN; polycyclic aromatic; hydrocarbons; solubility; supercritical carbon dioxideمقالات مرتبط جدید
- بررسی به کارگیری سیستم ذخیره سازی انرژی با استفاده از منابع انرژی تجدیدپذیر
- اقدامات لازم برای حفاظت از محیط زیست دریایی
- ارائه طرح مبتنی بر رایانش ابری جهت ارتقاء بهره وری صنایع خودروسازی (مطالعه موردی: مدیران خودرو)
- مروری بر تکنولوژی ماکرویو برای خردایش سنگ های کمیاب
- کاربرد و بکارگیری تکنولوژی های اینترنت اشیا ، یادگیری ماشین و پردازش تصویر در امنیت و کنترل خودرو
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.