Sub-transmission sub-station expansion planning based on bacterial foraging optimization algorithm

  • سال انتشار: 1396
  • محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 5، شماره: 1
  • کد COI اختصاصی: JR_JADM-5-1_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 347
دانلود فایل این مقاله

نویسندگان

H. Kiani Rad

Faculty of Electrical & Computer Engineering, Semnan University, Semnan, Iran.

Z. Moravej

Faculty of Electrical & Computer Engineering, Semnan University, Semnan, Iran.

چکیده

In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future load demand. The large number of design variables and combination of discrete and continuous variables make the substation expansion planning a very challenging problem. So far, various methods have been presented to solve such a complicated problem. Since the Bacterial Foraging Optimization Algorithm (BFOA) yield to proper results in power system studies, and it has not been applied to SEP in sub-transmission voltage level problems yet, this paper develops a new BFO-based method to solve the Sub-Transmission Substation Expansion Planning (STSEP) problem. The technique discussed in this paper uses BFOA to simultaneously optimize the sizes and locations of both the existing and new installed substations and feeders by considering reliability constraints. To clarify the capabilities of the presented method, two test systems (a typical network and a real ones) are considered, and the results of applying GA and BFOA on these networks are compared. The simulation results demonstrate that the BFOA has the potential to find more optimal results than the other algorithm under the same conditions. Also, the fast convergence, consideration of real-world networks limitations as problem constraints, and the simplicity in applying it to real networks are the main features of the proposed method.

کلیدواژه ها

Bacterial Foraging Optimization Algorithm, Genetic Algorithm, Substation Expansion Planning

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.