Performance Analysis of Support Vector Machine, Neural Network and Maximum Likelihood in Land Use/Cover Mapping and GIS (A Case Study: Namin County)
- سال انتشار: 1397
- محل انتشار: دومین کنفرانس بین المللی افق های نو در علوم مهندسی
- کد COI اختصاصی: ENGCONF02_090
- زبان مقاله: انگلیسی
- تعداد مشاهده: 676
نویسندگان
MA student, Department of Remote Sensing and GIS, Faculty of Geography, Kharazmi University,
MA student, Department of Remote Sensing and GIS, Faculty of Geography, Kharazmi University,
MA student, Department of Remote Sensing and GIS, Faculty of Geography, Kharazmi University,
MA Student, Department of Climatology, Faculty of Planning and Environmental Sciences, Tabriz
چکیده
The earth’s surface study by remote sensing has many benefits such as continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. Land use/ cover mapping in natural resources and environmental management and providing land use plans as well as determining land ability are necessary to create developing plans. Here a methodology has been development to map land use/cover using Landsat Operational Land Imager (OLI) data in Namin County of Iran for June 23, 2015. Because of OLI production with radiometric and geometric correction do not needs to correct them but the atmospheric correction apply with Quick method. FCC were used in this study are b5 from principle image as NIR band, NDVI that extracted from principle image as Red band and PCA 1 used as green Band. Based on the Anderson land-use/cover classification system, the land use/covers are classified as forest land, settlement, water bodies, range land, agricultural land and bare land. The land use/cover maps was produced by using supervised image classification technique based on Maximum Likelihood Classifier (MLC), Neural Network Classifier (NNC), support vector machine (SVM) with four kernels (linear, polynomial, radial basis function and sigmoid) and 261 training samples. Then, to remove the individual and distributed pixels in classified map and also to have a uniform map, 3×3 majority filter was implemented on the map. For accuracy assessment used from the Quick Bird satellite image was used and randomly collect 180 samples point as ground truth. Overall accuracy, user’s and producer’s accuracies, and the Kappa coefficient were then derived from the error matrices. The result showed that SVM (Linear & Radial) with kappa coefficient (0.989) and overall accuracy (99.1) % are the most accurate in order to produce land use/cover map.کلیدواژه ها
MLC, NNC, SVM, OLI, Namin County, Iranمقالات مرتبط جدید
- استفاده از مواد سازگار با محیط زیست در صنعت ساختمان بتن سبز و بازیافتی رویکردی موثر در توسعه پایدار
- بررسی جایگاه مناطق حفاظت شده ایران و نقش مشارکت های مردمی در حفاظت از مناطق
- مروری بر مقایسه اثر سمیت نانوذرات فلزی مختلف، روی آبشش ماهی ها
- مطالعه مدیریت ازن و عوامل آلودگی محیط زیست
- پارامترهای محیط زیستی یا فعالیت های انسانی کدام یک بیشترین تاثیر را بر غلظت متان اتمسفری ایران دارند؟
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.