Brain Activity Detection and Energy Quantification using Electroencephalogram Signal based on artificial neural networks
- سال انتشار: 1397
- محل انتشار: سومین کنفرانس بین المللی مهندسی برق
- کد COI اختصاصی: ICELE03_120
- زبان مقاله: انگلیسی
- تعداد مشاهده: 682
نویسندگان
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of MedicalSciences, Tehran, Iran- Research center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of MedicalSciences, Tehran, Iran- Research center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of MedicalSciences, Tehran, Iran- Research center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran
چکیده
Brain-computer interface is referred to a technique for communicating between human brain’s neural activityand an external device. The brain’s activity can be interpreted on the basis of electroencephalography signals whichhave been recorded by means of elastic cap and sensors. The main goal of this paper is to correct recognition andclassification of three different mental tasks by analyzing the specific pieces of electroencephalography signals. Aftersignal processing and finding features, we use a statistical feature selection method to reduce the data dimensions andconsequently enhance the accuracy of the classifier. The results show that the proposed method is a promising approachand has a good performance for brain activity levels determination or bispectral index usage, since the classificationaccuracy of 91.1% (Error of 8.9%) is obtained for the mentioned classes.کلیدواژه ها
Artificial neural network, Brain computer interface, Classifier, Electroencephalography, Feature extraction, Feature selectionمقالات مرتبط جدید
- بهینه سازی مدیریت انرژی در ریزشبکه ها با استفاده از الگوریتم های هوش مصنوعی
- مبانی، کاربردها و چالشهای یادگیری مشارکتی و تحلیل تجربی و مقایسه ابزارهای یادگیری فدرالی در پیاده سازی مدلهای یادگیری ماشین
- راهکارهای مبتنی بر هوش مصنوعی برای بهره وری انرژی در تولید سیمان: یک بررسی جامع
- معماری اینترنت اشیا مبتنی بر هوش مصنوعی در مدیریت انرژی هوشمند
- سیستم های EMS/BMS در ساختمان های ZEB و نمونههای اجرا شده آن در سطح جهانی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.