ESTIMATION OF LONGSHORE SEDIMENT TRANSPORT RATE, A COMPARISION BETWEEN SEMI EMPIRICAL FORMULAS AND ARTIFICIAL NEURAL NETWORK MODEL (ANN)

  • سال انتشار: 1397
  • محل انتشار: سیزدهمین همایش بین المللی سواحل، بنادر و سازه های دریایی
  • کد COI اختصاصی: ICOPMAS13_044
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 439
دانلود فایل این مقاله

نویسندگان

Tayeb Sadeghifar

Department of physical oceanography, Faculty of marine science, Tarbiat Modares University, Iran,

Amin Reza Zarifsanayei

Senior coastal engineer at Karan Sazeh Pasargad consulting engineers Co,Tehran, Iran

Reza Barati

epartment of physical oceanography, Faculty of marine science, Tarbiat Modares University, Iran

چکیده

Measurement of the LSTR in the surf zone is one of the great challenges in coastal engineering and sciences. Several popular semi-empirical methods have beendeveloped to estimate the alongshore sediment transport rate (LSTR), including CERC Shore Protection Manual (1984), Kraus et al. (1989), Walton and Bruno (1989),Kamphuis (1991), Bayram et al. (2001), and Kumar et al. (2003) methods [1, 2, 3, 4, 5, 6]. Moreover, to estimate LST some methods based on artificial Neural NetworkModel (ANN) have been developed recently by some researchers. ANNs is a fairly new nonlinear statistical technique that can be used to solve problems that are not suitable for conventional statistical methods. Bakhtyar et al., by Neural Fuzzy inference system estimate the sediment transport rate in Arge coast of India [7]. Also,Hashemi et al. stated that the ANN could predict the seasonal changes in Tremadoc Bay coast profiles. In another studies, In addition [8], Kabiri - samani et al., byusing of Artificial Neural Network (ANN) and Fuzzy Logic (FL) evaluated the sediment transport rate methods in coastal zone of Iran and concluded that ANN, FL andGradient descent method have better efficiencies from the others [9]. In this case study, the ANN model is developed for estimation of alongshore sediment transport rate in Noorcoastal zone (Caspian Sea southern coasts) using wave parameters (wave breaking height (H), surf zone width (W) and alongshore current velocity (V)) as input and measuredsediment transport rate as output. The prediction accuracy of the trained ANN model is compared with the top three popular existing semi-empirical formulas, including CERC(1984), Walton and Bruno (1989), and Kamphuis (1991) methods for estimation of the LSTR [1,3,4].

کلیدواژه ها

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.