Landslides susceptibility mapping using Geographically Weighted Regression with Gaussian distance weighting kernel and comparison with Logistic regression algorithm : a case study in Semirom, Isfahan, Iran
- سال انتشار: 1397
- محل انتشار: سومین کنفرانس بین المللی عمران ، معماری و طراحی شهری
- کد COI اختصاصی: ICCACS03_381
- زبان مقاله: انگلیسی
- تعداد مشاهده: 591
نویسندگان
GIS M.Sc. Student at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran,
Assistant Professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran,
Assistant Professor at School of Civil Engineering, Shahrood University of Technology, Shahrood, Iran,
چکیده
Huge economic detriment and victims are the results of Landslide. Since there are no physical sensors that would detect landslides directly, detection of landslides is a substantial challenge. Hence, the purpose of this article is to enhance the prediction results of landslide occurrence in Semirom region in Isfahan Province, Iran using a new methodology. Accordingly, the slope, aspect, lithology, land use, distance from faults, distance from river, distance from main roads, precipitation, plan curvature, profile curvature and the distance from residential regions are considered as the effective factors in landslide occurrence. By means of Geographically Weighted Regression (GWR) using the Gaussian distance weighting kernel with landslide inventory map, the Landslide susceptibility map was created. However, before combining the generated factors mentioned above, their independence among each other has been determined. For this reason, the correlation matrix was calculated and it showed that most of the correlations between factors were very minor, proposing that all landslide factors are adequately independent. Coefficient of Determination for GWR with Gaussian distance weighting kernel was 0.8557. The root mean squared error (RMSE) was 0.0804 and the mean root mean squared error (NRMSE) was 0.4468.کلیدواژه ها
Landslide, Landslide susceptibility mapping, Geographically Weighted Regression(GWR)مقالات مرتبط جدید
- Generative Design of Structural Forms Using Deep Generative Models: A New Paradigm in Structural Engineering
- مطالعه تطبیقی همنشینی زیباشناسی سبک مدرن و کلاسیک در طراحی معماری داخلی فضای خانه ها
- Investigating the Effect of Facade Material on the Amount of Carbon Emission (a case study of a residential building in Tehran)
- Comparative Analysis of Prefabricated Modular and Conventional Construction Systems: Efficiency, Cost, and Implementation Challenges
- An AI-Driven and Digital Twin-Based Framework for Climate-Resilient and Sustainable Infrastructure Management in Palm Jumeirah: A Case Study Integrating Remote Sensing, Numerical Modeling, and Green Project Practices
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.