A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
- سال انتشار: 1395
- محل انتشار: دوفصلنامه بهینه سازی در مهندسی صنایع، دوره: 9، شماره: 20
- کد COI اختصاصی: JR_JOIE-9-20_009
- زبان مقاله: انگلیسی
- تعداد مشاهده: 451
نویسندگان
Assistant Professor, Faculty of Industrial & Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
MSc, Faculty of Industrial & Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Assistant Professor, Faculty of Industrial & Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is based on the assumption that the optimal alternative is closer to fuzzy positive ideal solution (FPIS) and at the same time, farther from fuzzy negative ideal solution (FNIS).An aggregating function that is developed from LP- metric is based on the particular measure of ‘‘closeness to the ‘‘ideal solution.An efficient distance measurement is utilized to calculate positive and negative ideal solutions. The solution process is as follows: first, the decomposition algorithm is used to divide the large-dimensional objective space into a twodimensional space. A multi-objective identical crisp linear programming is derived from the fuzzy linear model for solving the problem. Then, a single-objective large-scale linear programming problem is solved to find the optimal solution. Finally, to illustrate the proposed method, an illustrative example is providedکلیدواژه ها
TOPSIS; MCDM; MODM; Multi-Objective Large-Scale Linear Programming (MOLSLP); Block angular structureمقالات مرتبط جدید
- نهان کاوی صوتی براساس مدل psychoacoustic معکوس شنیداری انسان
- اهمیت و جایگاه هوش مصنوعی و لجستیک بحران در حملات بیوتروریستی
- بهینه سازی سبد سهام بورس اوراق بهادار تهران با استفاده از الگوریتم ژنتیک
- بررسی چالش های امنیتی و راهکارهای آن در پایگاه داده های NoSQL و کلان داده ها
- طراحی مدل تخصیص هواپیماها به مسیر جهت حداکثر کردن سود مورد انتظار با در نظر گیری عدم قطعیت در تقاضا
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.