CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

A Globally Convergent BFGS Gauss-Newton method for Symmetric Non-Monotone Variational Inequalities

عنوان مقاله: A Globally Convergent BFGS Gauss-Newton method for Symmetric Non-Monotone Variational Inequalities
شناسه ملی مقاله: ICIORS10_052
منتشر شده در دهمین کنفرانس بین المللی انجمن تحقیق در عملیات ایران در سال 1396
مشخصات نویسندگان مقاله:

Fatemeh Abdi - Department of Mathematics and Computer Science, Amirkabir University of Technology
Fatemeh Shakeri - Department of Mathematics and Computer Science, Amirkabir University of Technology

خلاصه مقاله:
In this paper, a modified Josephy-Newton direction is presented for solving the symmetric non-monotone variational inequality. The direction is a suitable descent direction for the regularized gap function. In fact, this new descent direction is obtained by developing the Gauss-Newton idea, a well-known method for solving systems of equations, for non-monotone variational inequalities, and is then combined with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) type secant update formula. Also, when Armijo-type inexact line search is used, global convergence of the proposed method is established for non-monotone problems under some appropriate assumptions.

کلمات کلیدی:
Complementarity problem, Variational inequality, Gauss-Newton Method, Josephy-Newton method, BFGS method

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/766786/