Experimental investigation, modeling, and optimization of combined electro-(Fenton/coagulation/flotation) process

  • سال انتشار: 1395
  • محل انتشار: مجله پیشرفت در تحقیقات بهداشت محیط، دوره: 4، شماره: 2
  • کد COI اختصاصی: JR_JAEHR-4-2_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 658
دانلود فایل این مقاله

نویسندگان

Gilas Hosseini

Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

Snur Ahmadpour

Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

Maryam Khosravi

Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

Amir Hossein Mahvi

Center for Solid Waste Research, Institute for Environmental Research AND School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

چکیده

In this study, a combined electro-(Fenton/coagulation/flotation) (EF/EC/El) process was studied via degradation of Disperse Orange 25 (DO25) organic dye as a case study. Influences of seven operational parameters on the dye removal efficiency (DR%) were measured: initial pH of the solution (pH0), applied voltage between the anode and cathode (V), initial ferrous ion concentration (CFe), initial hydrogen peroxide concentration (CH2O2), initial DO25 concentration (C0), applied aeration flow rate (FAir), and process time (tP). Combined design of experiments (DOE) was applied, and experiments were conducted in accordance with the design. The experimental data were collected in a hand-made laboratory-scaleglass cylindrical batch reactor equipped with four graphite barcathodes, an aluminum sheet anode, an aeration pump equipped with an air filter and air distributer, a 150-rpm mixer, and a DC power supply. A DR% of 98 was achieved with a pH0 of 4, V of 10, CFe of 7.5, CH2O2 of 0, C0 of 140, and FAir of 0. The data were used for modeling using normal and reduced multiple regression models (MLR & r-MLR) and artificial neural networks (ANN & r-ANN). Further statistical tests were applied to determine the models’ goodness and to compare the models. Based on statistical comparison, ANN models clearly outperformed the stepwise multiple linear regression (SMLR) models. Finally, an optimization process was carried out using a genetic algorithm (GA) over the outperformed ANN model. The optimization procedure was used to determine the optimal operating conditions of the combined process.

کلیدواژه ها

Fenton Reagents Concentration, Artificial Neural Network, Genetic Algorithm, Dye Removal Efficiency, Electro-(Fenton/Coagulation/Flotation)

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.