Epilepsy Recognition Using Mixture Autoregressive with Two First Order autoregressive Components

  • سال انتشار: 1396
  • محل انتشار: هفتمین همایش بیوانفورماتیک ایران
  • کد COI اختصاصی: IBIS07_122
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 572
دانلود فایل این مقاله

نویسندگان

Fateme Jannesari

Department of Mathematical Statistics, University of Science and Culture, Tehran, Iran.

Mohammad Reza Yeganegi

Department of Accounting, Islamic Azad University, Central Tehran Branch, Tehran, Iran

چکیده

Most real-world time series such as oil prices, stock prices, inflation rates, etc. are complex and usually non-linear. Therefore linear models alone are not useful for modeling linear and nonlinear patterns in time series data at the same time. In recent years mixture autoregressive model (MAR) are developed for modeling nonlinear time series. Recently Maleki and Nematollahi used a version of AR model with two components normal mixture for modeling EEG data. Maharaj and Alonso tackled the same problem using wavelet method. They used wavelet various to find the discrimination rule for discrimination between a set of healthy EEG signals and a set of EEG recordings during seizure activity. This paper is concerned with the application of discriminating two MAR models to detect epileptic attacks. The EM algorithm is organized for fitting MAR model to a class of time series data. The Likelihood ratio criterion is provided for discrimination of two MAR models with two AR(1) components. Presented method is applied for discrimination between healthy and epileptic EEG signals rate. Low discrimination error rate based on small samples show the ability of proposed method, this results show advantage of Likelihood ratio of MAR models for detecting epilepsy attacks.

کلیدواژه ها

EEG; Epilepsy attack diagnosis; Likelihood ratio; Mixture autoregressive model; Time series discrimination

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.