یادگیری عمیق درسامانه های توصیه گر
- سال انتشار: 1395
- محل انتشار: بیست و دومین کنفرانس ملی سالانه انجمن کامپیوترایران
- کد COI اختصاصی: ACCSI22_074
- زبان مقاله: فارسی
- تعداد مشاهده: 1196
نویسندگان
دانشجوی کارشناسی ارشد، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف، تهران
استادیار، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف، تهران
چکیده
روش پالایش همکارانه یکی ازکارآمدترین وپرکاربردترین روش های مورد استفاده در بسیاری ازسامانه های توصیه گر است. روش های اولیه پالایش همکارانه ویژگی های نهان کاربران و گزینه ها را با استفاده از تجزیه ماتریس امتیازات به دست می آوردند، اما این روش ها با مشکل شروع سرد و تنک بودن ماتریس امتیازات مواجه می شوند. در سال های اخیر استفاده از اطلاعات اضافه موجود، در کنار ماتریس امتیازات برای به دست آوردن ویژگی های نهان مورد توجه قرار گرفته است. از طرف دیگر، مدل های یادگیری عمیق، توانایی بالایی در یادگیری بازنمایی مناسب، به خصوص در مواقعی که با داده های خام سروکار داریم از خود نشان داده است. باتوجه به این ویژگی یادگیری عمیق، در این پژوهش از شبکه های عمیق برای به دست آوردن نمایش مناسب از گزینه ها استفاده شده است. به طور خاص، یک مدل ترکیبی از یادگیری عمیق در کنار تجزیه ماتریسی ارایه شده است که یک ارتباط دوطرفه بین ویژگی های به دست آمده از تجزیه ماتریسی و ویژگی های محتوایی استخراج شده با استفاده از یادگیری عمیق درباره گزینه ها ایجاد می کند. در این مدل به طور همزمان پارامترهای هر دو بخش یادگرفته می شود. مقایسه مدل پیشنهادی با برترین روش های ارایه شده درسال های اخیر بر روی مجموعه داده های مختلف از دنیای واقعی برتری روش پیشنهادی برسایر روش های ارایه شده را نشان می دهد.کلیدواژه ها
سامانه های توصیه گر،شبکه های عمیق، پالایش همکارانه، محتوای گزینه هامقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.