A new Sparse Coding Approach for Human Face and Action Recognition

  • سال انتشار: 1395
  • محل انتشار: فصلنامه سیستم های اطلاعاتی و مخابرات، دوره: 5، شماره: 1
  • کد COI اختصاصی: JR_JIST-5-1_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 901
دانلود فایل این مقاله

نویسندگان

Mohsen Nikpour

Department of Electrical and Computer Engineering, Babol Noushirvani University of Technology, Babol, Iran

Mohammad Reza Karami Molaei

Department of Electrical and Computer Engineering, Babol Noushirvani University of Technology, Babol, Iran

Reza Ghaderi

Department of nuclear Engineering, Shahid Beheshti University of Tehran, Tehran, Iran

چکیده

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image, video and etc. In the cases where we have some similar images from the different classes, using the sparse coding method the images may be classified into the same class and devalue classification performance. In this paper, we propose an Affine Graph Regularized Sparse Coding approach for resolving this problem. We apply the sparse coding and graph regularized sparse coding approaches by adding the affinity constraint to the objective function to improve the recognition rate. Several experiments has been done on well-known face datasets such as ORL and YALE. The first experiment has been done on ORL dataset for face recognition and the second one has been done on YALE dataset for face expression detection. Both experiments have been compared with the basic approaches for evaluating the proposed method. The simulation results show that the proposed method can significantly outperform previous methods in face classification. In addition, the proposed method is applied to KTH action dataset and the results show that the proposed sparse coding approach could be applied for action recognition applications too.

کلیدواژه ها

Sparse Coding; Manifold Learning; Graph Regularization; Affinity; Image Representation; Image Classification

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.