A MATHEMATICAL METHOD TO INVESTIGATE DIFFERENT PROFILES ON DEFORMATION OF CYLINDRICAL SHELLS WITH VARIABLE THICKNESS
عنوان مقاله: A MATHEMATICAL METHOD TO INVESTIGATE DIFFERENT PROFILES ON DEFORMATION OF CYLINDRICAL SHELLS WITH VARIABLE THICKNESS
شناسه ملی مقاله: MAEMT02_010
منتشر شده در دومین کنفرانس ملی ریاضی:مهندسی پیشرفته با تکنیک های ریاضی در سال 1396
شناسه ملی مقاله: MAEMT02_010
منتشر شده در دومین کنفرانس ملی ریاضی:مهندسی پیشرفته با تکنیک های ریاضی در سال 1396
مشخصات نویسندگان مقاله:
Farid Mahboubi Nasrekani - Ph.D Student, Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN
Hamidreza Eipakchi - Assoc. Prof., Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN
خلاصه مقاله:
Farid Mahboubi Nasrekani - Ph.D Student, Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN
Hamidreza Eipakchi - Assoc. Prof., Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN
A mathematical formulation is presented to investigate the effect of different profiles on deformation of the cylindrical sells with variable thickness. The shells are subjected to the axial and radial constant pressures. The displacement field is predicted by using the first order shear deformation theory. The kinematics of the problem is defined by the von-Karman theory and the constitutive equation obeys the Hooke’s law. By applying the virtual work principle, the governing equations which are a system of nonlinear differential equations with variable coefficients are extracted. The matched asymptotic expansion method of the perturbation technique is used to solve the governing equations and then the effects of geometrical parameters on the displacements are studied. Also, a comparison with the finite elements method is performed.
کلمات کلیدی: cylindrical shells with variable thickness, elastic deformation, thickness profile, perturbation technique, finite element method
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/621901/