State of the Art of Radial Basis Functions for Reservoir Rock Permeability Modeling

  • سال انتشار: 1395
  • محل انتشار: دومین کنفرانس ملی ژئومکانیک نفت
  • کد COI اختصاصی: NPGC02_048
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 581
دانلود فایل این مقاله

نویسندگان

Afshin Tatar

Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

S.A. Tabatabaei Nejad

Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

Elnaz Khodapanah

Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

Mosayyeb Kamari

National Iranian South Oil Company (NISOC), Reservoir Evaluation department

چکیده

Permeability is a key factor in fluid flow in porous media and is of great importance in petroleum industry. Numerous correlation and different methods to predict permeability signifies this fact. Direct methods to predict permeability such as nuclear magnetic resonance (NMR) log or core analysis is very expensive. It can be assumed that all the drilled wells have full set logs. Thus, it is convenient to develop a model to predict permeability using full set logs as input. One of the best tools to predict permeability is the neural networks. The purpose of this study is to construct a novel and efficient method to predict permeability based on intelligent methods. For this aim, full set logs and core permeability data were acquired from open literature and radial basis function neural network along with genetic algorithm were used to develop a novel method. The proposed model was validated using two different neural networks. The results show that the proposed model predicts the permeability values satisfactorily and is superior to other investigated neural networks.

کلیدواژه ها

Permeability, Radial basis function neural network, Full set logs, Machine learning, Artificial intelligence, NMR Log

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.