بررسی ارتباط تصاویر ECG با تشخیص بیماری دیابت به کمک شبکه عصبی مصنوعی و الگوریتم های داده کاوی
- سال انتشار: 1395
- محل انتشار: سومین کنگره بین المللی کامپیوتر، برق و مخابرات
- کد COI اختصاصی: ITCC03_249
- زبان مقاله: فارسی
- تعداد مشاهده: 634
نویسندگان
دانشکده فنی ومهندسی، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد، ایران
نویسنده مسیول دانشجوی کارشناسی ارشد مهندسی نرم افزار کامپیوتر، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد، ایران
عضو هیات علمی، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد، ایران
چکیده
بیماری دیابت یکی از شایعترین بیماری های دنیا شناخته شده است. یکی از مشکلات اساسی مربوط به این بیماری عدمتشخیص بموقع و صحیح آن می باشد. هدف این پژوهش ارایه روش جدیدی برای تشخیص بیماری دیابت است و قصددارد برای اولین بار ارتباط تصاویرECG با تشخیص بیماری دیابت به کمک شبکه عصبی مصنوعی و الگوریتم های داده کاوی را بررسی کند.روش بررسی: در این مطالعه 8 بیمار دیابتی و 64 فرد سالم حضور داشتند. الکتروکاردیوگرافی برایتمام افراد انجام گرفت. اطلاعات مورد نیاز از تصاویر ECG شامل: نام بیمار، سن، qtcb ،qt ،PR ،P ،PP ،RR ،t ،p ،HRECG استخراج و در پایگاه داده جمع آوری شد برای طبقه بندی بیماران از شبکه های عصبی احتمالی و الگوریتم های استانداردداده کاوی استفاده شده است. داده ها از طریق الگوریتم های داده کاوی و روش های متفاوت کلاس بندی مورد بررسیو ارزیابی قرار گرفتند و نتایج هر یک با توجه به نرخ صحیح مقایسه شدند. weka از نرم افزاربرای رده بندی ها استفاده شده است. یافته ها: دقت شناسایی الگوریتم های مبتنی بر قوانین و شبکه عصبی، نسبت به الگوریتم های درخت تصمیم والگوریتم های مبتنی بر فاصله بالاتر و نتایج بهتری در تشخیص بیماری دیابت نشان دادند. بهترین نرخ شایستگی در الگوریتمConsistencySubsetEval با میزان 0/89 بود و موج QRS به عنوان بهترین انتخاب در همه الگوریتم ها گزارش می شود. ارزیابی داده های افراد دیابتی و غیر دیابتی با استفاده از الگوریتم شبکه های عصبی احتمالی نرخ صحیحی 95% را نشان داد. همچنین الگوریتم KNN کمترین پیچیدگی زمانی را نشان داد. نتیجه گیری: مدل مبتنی بر قوانین دقت بالاتری نسبت به کلیه الگوریتم های طبقه بندی داده کاوی مورد استفاده درپژوهش نشان داد.کلیدواژه ها
تشخیص بیماری دیابت، الگوریتم های داده کاوی، شبکه عصبی مصنوعی، تصاویر ECGمقالات مرتبط جدید
- tGraph_PheroWalk : یک الگوریتم جدید برای یادگیری بازنمایی گراف های پویا
- Efficient Triple Modular Redundancy for Reliability Enhancement of DNNs Using Explainable AI
- مقایسه فناوری CMUT با پیزوالکتریک برای کاربرد در تصویربرداری التراسونیک
- بهبود کنترل دست رباتیک به کمک کنترل کننده تطبیقی فازی-PID
- طراحی و شبیه سازی آنتن تک قطبی چند بانده فشرده با تغذیه ریز نوار برای بهبود عملکرد در باندهای فرکانسی ۲.۵، ۳.۸، ۵.۴ و ۶.۹ گیگاهرتز
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.