Extracting Rules from Imbalanced Data: The Case of Credit Scoring
- سال انتشار: 1393
- محل انتشار: فصلنامه سیستم های اطلاعاتی و مخابرات، دوره: 3، شماره: 1
- کد COI اختصاصی: JR_JIST-3-1_005
- زبان مقاله: انگلیسی
- تعداد مشاهده: 582
نویسندگان
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده
Credit scoring is an important topic, and banks collect different data from their loan applicant to make an appropriate and correct decision. Rule bases are of more attention in credit decision making because of their ability to explicitly distinguish between good and bad applicants. The credit scoring datasets are usually imbalanced. This is mainly because the number of good applicants in a portfolio of loan is usually much higher than the number of loans that default. This paper use previous applied rule bases in credit scoring, including RIPPER, OneR, Decision table, PART and C4.5 to study the reliability and results of sampling on its own dataset. A real database of one of an Iranian export development bank is used and, imbalanced data issues are investigated by randomly Oversampling the minority class of defaulters, and three times under sampling of majority of non-defaulters class. The performance criterion chosen to measure the reliability of rule extractors is the area under the receiver operating characteristic curve (AUC), accuracy and number of rules. Friedman’s statistic is used to test for significance differences between techniques and datasets. The results from study show that PART is better and good and bad samples of data affect its results lessکلیدواژه ها
Credit Scoring; Banking Industry; Rule Extraction; Imbalanced Data; Samplingمقالات مرتبط جدید
- کارآفرینی در کتابخانه های عمومی با راه اندازی خدمات مشاوره اطلاعاتی و مشاوره خوانندگان
- متاورس: مباحثی از فرصت های حرفه ای و مشاغل در گستره فناوری نوین
- بررسی معماری و بلوغ کسب و کار رایانش ابری بر مبنای مدیریت امنیت اطلاعات در علم اطلاع شناسی (مطالعه موردی شرکت های دانش بنیان پارک فناوری ارتباطات و اطلاعات)(چارچوب همکاری های بین رشته ای و فرا رشته ای برای کارآفرینی دانش بنیان)
- ایجاد سازمان نظام مدیریت اطلاعات و دانش (نماد)
- لزوم توجه به فرصت های جدید بازارکار در محتوای درسی رشته علم اطلاعات و دانش شناسی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.