CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Integration of Generalized Regression Neural Network (GRNN) and Particle Swarm Optimization (PSO) for solar radiation prediction

عنوان مقاله: Integration of Generalized Regression Neural Network (GRNN) and Particle Swarm Optimization (PSO) for solar radiation prediction
شناسه ملی مقاله: NCOT01_086
منتشر شده در همایش سراسری فناوری و تکنولوژی در مهندسی عمران، معماری،برق و مکانیک در سال 1395
مشخصات نویسندگان مقاله:

Mohammad Reza Assari - Department of Mechanical Engineering, Faculty of Engineering, Jundi-Shapour University of technology, Dezful, Iran,
Majid Shokatzadeh - Department of Mechanical Engineering, Faculty of Engineering, Jundi-Shapour University of technology, Dezful, Iran

خلاصه مقاله:
Measured simple atmospheric parameters between 1985 and 2005 for Esfahan city in Iran (latitude N 32°67', longitude E 51°67', elevation 1550.4 m), were used for the estimation of global solar radiation (GSR) in future time domain using an Integrated Generalized Regression Neural Network (GRNN) and Particle Swarm Optimization (PSO) method. To achieve this, month of the year, air temperature and relative humidity were used as inputs to the neural networks and the GSR used as output. Measured weather data from 1988 to 2001, was used in order to train the networks while the measured data from 2002 to 2005 was used for validating the trained networks. This study confirms the ability of the GRNNs to predict solar radiation values.

کلمات کلیدی:
Solar Radiation, Relative humidity, Generalized Regression Neural Networks (GRNNs), Air temperature, Particle Swarm Optimization (PSO)

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/566494/