Iris Recognition Using Combined Morphological Operations and Hamming Distance Approach

  • سال انتشار: 1395
  • محل انتشار: اولین کنفرانس بین المللی چشم انداز های نو در مهندسی برق و کامپیوتر
  • کد COI اختصاصی: NPECE01_101
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 599
دانلود فایل این مقاله

نویسندگان

Neda Ahmadi

Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz Ahvaz, Iran

Gholamreza Akbarizadeh

Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz Ahvaz, Iran

چکیده

Nowadays technology has salient progress and among this iris recognition attract many attention due to its importance in our life such as security. Even though, many investigation has been done in this field, but it deserves more. So, in this paper a new segmentation method is performed to segment an exact part of eyes. In order to apply this approach, after preprocessing step, at first, local entropy of grayscale image is utilized. Then, rough mask is created in order to segment the textures for the bottom texture and threshold the rescaled image. After that, for smoothing the edges process and closing all the open holes in the object, morphologically close image is employed, and selected a 9-by-9 neighborhood as it was also chosen by local entropy of grayscale image. Finally, for extracting the top and bottom texture, and calculating the texture image, local entropy of grayscale image is utilized, and using Otsu’s method forglobalizing image threshold. Hamming distance measure is applied in order to find similarity degree between two images. We use CASIA-Iris V3 database and our experimental result demonstrate high performance on this database

کلیدواژه ها

iris, acquisition, segmentation, biometrics, morphological operators

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.