Classification of Persian Handwritten Digits Using Spiking Neural Networks
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 618
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
KBEI02_122
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
In recent years Spiking Neural Networks (SNNs) have gained in popularity due to their low complexity. They have been used in many processes like learning and classification of data such as images. In this paper we have used the SNN Model, in order to have robust learning and classification of handwritten digits, i.e., to have a learning process which is persistent against changes and high noise levels. Due to the similarities among handwritten digits, the classifications have been erratic but the Deep Belief Network we have used in this paper solves this problem to a great extent. Our model consists of three layers. The first layer, composed of 225 neurons (15*15 pixels for each image), works as the receptor of input images. The middle layer is used for processes, encoding and network learning, while the last layer, which is composed of 10 neurons (as we have 10 distinct classes), does the job of prediction and classification of images. The model was implemented using MATLAB and we have used Hoda Persian handwritten digits dataset as our input images. The obtained results show that the implemented model can carry out, with good accuracy (95%), the learning and classification of images of handwritten digits with high levels of noise.
کلیدواژه ها:
Spiking neural networks - SNN ، Image classification ، deep belief networks ، STDP ، Artificial neuron
نویسندگان
Kourosh Kiani
Faculty of Electrical and Computer Engineering Semnan University Semnan, Iran
Elmira Mohsenzadeh Korayem
Department of Electrical and Computer Engineering Semnan University Semnan, Iran