Increasing the Efficiency of IBLR_ML Algorithm by Using Multi-Agent Model

  • سال انتشار: 1395
  • محل انتشار: اولین کنفرانس بین المللی دستاوردهای نوین پژوهشی در مهندسی برق و کامپیوتر
  • کد COI اختصاصی: CBCONF01_0343
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 741
دانلود فایل این مقاله

نویسندگان

Fatemeh Shamsezzat

Department of Computer Science Faculty of Mathematics and Computer, Fasa University Fasa, Iran

Monireh Azimi Hemat

Department of Computer Faculty of Engineering, Payame Noor University Tehran, Iran

چکیده

Multi-label classification is an extension of conventional classification in which each instance is assumed to belong to exactly one among a finite set of candidate classes. Multi-label text categorization problem is the prime motivation of multi-label classification, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances that each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. A novel method of Multi-label classification is combining instance-based learning and logistic regression for multi-label classification . This algorithm suffers from high computational complexity. In this paper, multi-agent model is used for this algorithm to access more efficiency specially when the training set is extensive or the number of label or attributes is many. Multi-Agent Systems utilizes parallel techniques, and decrease considerably the consumption time of the algorithm. This method is experienced on five different data set and the results have been compared to sequential method. The results signifying the increase of almost 2-times speed for multi agent system.

کلیدواژه ها

Multi-label classification, multi-agent programming, parallel technique

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.