Intelligent Determining Amount of Inter-Turn Stator Winding Fault in Permanent Magnet Synchronous Motor Using an Artificial Neural Network Trained by Improved Gravitational Search Algorithm

  • سال انتشار: 1393
  • محل انتشار: مجله پیشرفت در تحقیقات کامپیوتری، دوره: 6، شماره: 1
  • کد COI اختصاصی: JR_JACR-6-1_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 478
دانلود فایل این مقاله

نویسندگان

Mehran Taghipour-gorjikolaie

Deptment of Electronic Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Seyyed Mohammad Rezavi

Deptment of Electronic Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Mohammad Ali ShamiNejad

Deptment of Power Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

چکیده

Extension of inter-turn fault in windings of PMSM can damage all parts of electrical systems, and in some cases in sensitive applications may lead to irreparable events. Identification of such small faults at incipient steps can be so helpful to protect entire part of electrical system. In this paper, intelligent protection system is designed which is made by two major parts. In the first part of intelligent protection system K-Nearest Neighbor classifier is used as a detecting system to discriminate inter-turn fault from normal condition, phase to phase fault and open circuit condition and also to detect faulty phase, simultaneity. After that if inter-turn fault is happened, second part of proposed system which is based on an ANN Trained with Improved Gravitational Search Algorithm determines the amount of fault. IGSA is presented to improve the performance of the proposed protection system in this paper. Obtained results show that both part of intelligent proposed and intelligent protection system can do their best performance. It can successfully detect inter-turn fault and follow it and predict amount of this fault.

کلیدواژه ها

population optimization algorithm, gravitational search algorithm, RMS value of current, negative sequence current, inter-turn stator winding fault, permanent magnet synchronous motor

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.