Daily Gas Demand Load Forecasting for Tehran, Based on Artificial Neural Network
عنوان مقاله: Daily Gas Demand Load Forecasting for Tehran, Based on Artificial Neural Network
شناسه ملی مقاله: ICHEC05_040
منتشر شده در پنجمین کنگره بین المللی مهندسی شیمی در سال 1386
شناسه ملی مقاله: ICHEC05_040
منتشر شده در پنجمین کنگره بین المللی مهندسی شیمی در سال 1386
مشخصات نویسندگان مقاله:
Ahmad Azari - Chemical Engineering Dept., Engineering School, University of Tehran, I. R, Iran
Mojtaba Shariaty Niasar - Chemical Engineering Dept., Engineering School, University of Tehran, I. R, Iran
Mahmoud Alborzi - Chemical Engineering Dept., Petroleum Industry University, I. R. Iran
خلاصه مقاله:
Ahmad Azari - Chemical Engineering Dept., Engineering School, University of Tehran, I. R, Iran
Mojtaba Shariaty Niasar - Chemical Engineering Dept., Engineering School, University of Tehran, I. R, Iran
Mahmoud Alborzi - Chemical Engineering Dept., Petroleum Industry University, I. R. Iran
n this work, we forecast the gas demand load for Tehran city, based on the most important weather parameters, by using artificial neural network with multilayer back propagation, BP algorithm. At first, the effective daily temperature will be determined and then the data for last days for network training were used. The main advantage of this work is a good agreement of almost 93% with the real data. This network can further be developed to forecast gas load of other cities of Iran.
کلمات کلیدی: Gas Load, Forecasting, Neural Network, Multi Layer Perceptron, Back Propagation
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/45890/