A Novel Hybrid Genetic-neural Approach for Breast Cancer Diagnosis on Dynamic Magnetic Resonance Imaging
محل انتشار: چهارمین کنفرانس ماشین بینایی و پردازش تصویر
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,471
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP04_074
تاریخ نمایه سازی: 21 دی 1386
چکیده مقاله:
A hybrid genetic-neural (GA-ANN) model was designed to differentiate malignant from benign in a group of patients with histopathologically proved breast lesions on the base of BI-RADS descriptors and data derived independently from time-intensity curve. We used a database with 117 patients' records each of which consisted of 27 quantitative parameters mostly derived from time-intensity curve, 4 BI-RADS qualitative data which determined by expert radiologist and patient age. These findings were encoded as features for a genetic algorithm (GA) as a preprocessor
for feature selection and classified with a three-layered neural network to predict the outcome of biopsy. The network was trained and tested using the jackknife method and its performance was then compared to that of the experienced radiologist in terms of sensitivity, specificity, accuracy and receiver operating characteristic curve (ROC) analysis. The network was able to classify correctly 107 of 117 original cases and
yielded a good diagnostic accuracy (91%), sensitivity (95%) and specificity (78%) compared to that of the radiologist (92%), (96%) and (78%).
کلیدواژه ها:
نویسندگان
Abdolmaleki
Tarbiat Modares University
Nirooee
science and research branch of Azad University
Gity
Tehran University of medical science
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :