Optimization of preparation of Insulin nanoparticles composed of quaternized aromatic derivatives of chitosan using artificial neural networks

  • سال انتشار: 1394
  • محل انتشار: کنفرانس بین المللی علوم و مهندسی
  • کد COI اختصاصی: ICESCON01_0055
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 786
دانلود فایل این مقاله

نویسندگان

Shadab Shahsavari

Chemical Engineering Department, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

Gita Bagheri

Chemical Engineering Department, Shahr Qods Branch, Islamic Azad University, Tehran, Iran

چکیده

The aim of this research was to develop an artificial neural network (ANN) in order to design a nanoparticulate oral drug delivery system for insulin. The pH of polymer solution (X1), concentration ratio of polymer/insulin (X2) and polymer type (X3) are considered as the input values and the particle size, zeta potential, PdI, and entrapment efficiency (EE%) as output data. ANNs are employed to generate the best model to determining the relationships between input and response values. In this research, a multi-layer percepteron with different topologies has been tested in order to define the one with the best accuracy and performance. The optimization was used by minimizing the error between the predicted and observed values. Three training algorithms (Levenberg –Marquardt (LM), Bayesian- Regularization (BR), and Gradient Descent (GD) were employed to train ANNs with various numbers of nodes, hidden layers and transfer functions by random selection. The accuracy of prediction data were assayed by the mean squared error (MSE).The ability of all algorithms was in the order: BR> LM> GD. Thus, BR was selected as the best algorithm

کلیدواژه ها

Artifical neural network (ANN), Levenberg- marquadt algorithm, Bayesian Regulation (BR) algorithm, Gardient Descent algorithm, Insulin nanoparticles

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.