A QSAR investigation on pentanamide Compounds as stomach cancer drug

  • سال انتشار: 1394
  • محل انتشار: کنفرانس بین المللی علوم و مهندسی
  • کد COI اختصاصی: ICESCON01_0005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 770
دانلود فایل این مقاله

نویسندگان

Sakineh Bashiri pirbazari

Department of chemistry, zanjan Branch, payam noor University, zanjan, Iran

Ghasem Ghasemi

Department of chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

Atosa Bashiri pirbazari

Department of chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

چکیده

Quantitative structure activity relationship models are regression or classification models used in the chemical and biological sciences and engineering. QSAR models first summarize a supposed relationship between chemical structures and biological activity in a data-set of chemicals. Second predict the activities of new chemicals. For example, biological activity can be expressed quantitatively as the concentration of a substance required to give a certain biological response. In work, quantitative structure activites relationship study has been done on pentanamide Compounds analogues acting stomach cancer inhibitors. Genetic algorithm , artificial neural network and multiple linear regression were used to create the non-linear and linear QSAR models. GA-ANN model was much better than other models. Hyperchem, Chemoffice and Gaussian 30 softwares were used for geometry optimization of the molecules and calculation of the quantum chemical descriptors. The root- mean- square errors of the training set and the test set for GA-ANN model using jack-knife were 310100, 319201, R9 = 31.0. Also, the R and R9 values were obtained 3.21, 3123 from GA-stepwise MLR model.

کلیدواژه ها

QSAR, Hydroxyl pentanamide , Genetic algorithm, Stomach cancer, Artificial neural network

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.