Particle Swarm Classifiers

سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,744

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE13_177

تاریخ نمایه سازی: 27 آبان 1386

چکیده مقاله:

A method is described for finding the decision functions for classifying patterns in the feature spaces, using particle swarm optimization (PSO). The results show that the performance of this new swarm intelligence classifier is comparable to, or better than knearest neighbour (k-NN) and multi layer perceptron (MLP) classifiers, where the performance of these two classifiers depends heavily on the value of k and the architecture respectively. Iris data as a benchmark and automatic radar target recognition as a practical problem are two examples for classification.

نویسندگان

Hamid Zahiri

University of Birjand, Department of Electrical Engineering

Alireza Seyedin

Ferdowsi University of Mashhad, Department of Electrical Engineering