CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Prediction of wall thickness in deep drawing process with neural network

عنوان مقاله: Prediction of wall thickness in deep drawing process with neural network
شناسه ملی مقاله: ISME16_934
منتشر شده در شانزدهمین کنفرانس سالانه بین المللی مهندسی مکانیک در سال 1387
مشخصات نویسندگان مقاله:

Kashtiban - MSC.Student Amirkabir university of technology Tehran,Iran
Mollaei - Associate Professor Amirkabir university of technology Tehran,Iran
Ghaffari Tari - MSC.Student Amirkabir university of technology Tehran,Iran

خلاصه مقاله:
In this paper, the modeling of deep-drawing process using neural networks is established. The relationships between process parameters (punch radius, matrix radius, blank holder force) and part quality (wall thickness) are created, based on a neural network. Finite element analyses are conducted for combination of process parameters designed using statistical full factorial experimental design. A predictive model for wall thickness is created using Levenberg-Marquardt (LM) artificial neural network exploiting finite element analysis results. The results obtained are found to correlate well with experimental data.

کلمات کلیدی:
sheet metal forming, full factorial, Finite element method, Artificial neural network

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/41510/