انتخاب مرتبط ترین پارامترهای ورودی با استفاده از WEKA برای مدل های پیش بینی تشعشع خورشیدی مبتنی بر شبکه های عصبی مصنوعی
- سال انتشار: 1393
- محل انتشار: همایش ملی علوم و مهندسی کامپیوتر با محوریت امنیت ملی و توسعه پایدار
- کد COI اختصاصی: COMPUTER01_154
- زبان مقاله: فارسی
- تعداد مشاهده: 1624
نویسندگان
دانشجوی کارشناسی ارشد دانشگاه آزاد بابل
دانشجوری کارشناسی ارشد دانشگاه آزاد بابل
چکیده
پیش بینی تشعشع خورشیدی برای کاربری های بسیاری در تحقیقات مربوط به انرژی تجدیدپذیر مهم می باشد. تشعشع خورشیدی با استفاده از مدل های پیش بینی تشعشع خورشیدی که شامل مدل های سنتی و مدل مبتنی بر شبکه عصبی مصنوعی Atrificial Neural N etwork (ANN) می باشد، پیش بینی می گردد. در اینجا متغیرهای هواشناسی و جغرافیایی وجود دارند که بر تشعشع خورشیدی تاثیر می گذارند، لذا شناسایی متغیرهای مناسب برای پیش بینی صحیح تشعشع خورشیدی امری مهم در حیطه تحقیقات به حساب می آید. نرم افزار محیط وایکاتو برای تجزیه و تحلیل دانش Waikato Environment for Knowledge Analysis (WEKA) با این هدف در 11 نقطه در گیلان با شرایط آب و هوایی مختلف به منظور یافتن موثرترین پارامترهای ورودی برای پیش بینی تشعشع خورشیدی در مدل های ANN استفاده گردید. پارامترهای ورودی عبارتند از عرض جغرافیایی، طول جغرافیایی، حداکثر سرعت وزش باد، متوسط دمای هوا در هر ماه، معدل حداکثر دمای هوا، معدل حداقل دمای هوا، ساعات آفتابی، بارندگی ماهیانه، حداکثر بارندگی در یک روز برای شهرهای مختلف گیلان. به منظور چک کردن صحت پیش بینی با استفاده از پارامترهای شناخته شده، سه مدل شبکه عصبی مصنوعی ANN توسعه یافته اند (ANN-1, ANN-2 و ANN-3). حداکثر MAPE برای ANN-2, ANN-1 و ANN-3 به ترتیب برابر با 22.15% ، 20.29% و 22.14% می باشند که نشان از 186% بهبود صحت در پیش بنی مدل ANN-2 دارند.کلیدواژه ها
شبکه عصبی، داده کاوی، WEKAمقالات مرتبط جدید
- سودآوری مشتریان در خردهفروشی قطعات یدکی ماشین آلات راهسازی با رویکرد یادگیری ماشین
- ارائه روشی کارآمد جهت شناسایی کودکان نیازمند به پیوند مغز استخوان با استفاده از ترکیب طبقه بند ماشین بردار پشتیبان و الگوریتم بهینه سازی فاخته
- استخراج بهینه پارامترهای تاثیر گذار الگوریتم بهینه سازی بوفالوی آفریقایی با هدف استخراج ویژگی های مهم به منظور افزایش کارایی طبقه بندی داده ها
- ارائه روشی کارآمد برای بهبود عملکرد الگوریتم بهینه سازی کلاغ سیاه به منظور افزایش صحت خوشه بندی داده ها
- استفاده از الگوریتم باور بیزین در لایه کاملا متصل شبکه عصبی کانولوشن با هدف افزایش دقت تشخیص تصاویر
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.