Modeling of Heat Transfer Characteristic of Serpentine Microchannels Using Artificial Neural Network and Genetic Algorithm Analysis

  • سال انتشار: 1393
  • محل انتشار: پانزدهمین کنگره ملی مهندسی شیمی ایران
  • کد COI اختصاصی: ICHEC15_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 869
دانلود فایل این مقاله

نویسندگان

Masoud Rahimi

CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran

Reza Beigzadeh

CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran

Marzieh Hajialyani

CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran

چکیده

In the present research, an Artificial Neural network (ANN) is applied for estimating the heat transfer characteristic (Nusselt number) in serpentine microchannels. Experimental data were collected for developing the ANN. The experiments were carried out with cold fluid in serpentine micro tubes which placed in a hot bath. There are six serpentine micro tubes with diameter of 787.4 µm and various geometric parameters used in the experiments. The output (target) data of the ANN model is Nusselt number (Nu) and input data are Reynolds number (Re), ratio of straight length to diameter (Ls/d), and curvature ratios (RC/d ). The validity of the neural network modeling was evaluated through a testing data set, which were randomly extracted from the database and were not used in the training of the network. Furthermore, empirical correlation for prediction of Nu was developed in the form of classical power–law correlation and the equation constants were determined using genetic algorithm (GA) technique. The estimated results of the developed ANN model were compared with the presented correlation.

کلیدواژه ها

artificial neural network ANN,genetic algorithm GA,correlation,nusselt number,serpentine microchannel

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.