شبیه سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی در حوضه کارده

  • سال انتشار: 1384
  • محل انتشار: پنجمین کنفرانس هیدرولیک ایران
  • کد COI اختصاصی: IHC05_223
  • زبان مقاله: فارسی
  • تعداد مشاهده: 2192
دانلود فایل این مقاله

نویسندگان

ع جهانگیر

دانشجوی کارشناسی ارشد دانشکده کشاورزی دانشگاه مازندران

م رائینی

استادیار دانشکده کشاورزی دانشگاه مازندران

م.ض احمدی

استاد دانشکده کشاورزی دانشگاه مازندران

ا اکبرپور

مربی دانشکده کشاورزی دانشگاه بیرجند

چکیده

فرآیند بارش-رواناب یک پدیده فیزیکی است که بررسی آن به سبب تاصیرپذیری از پارامترهای مختلف، دشوار می باشد.هدف این پژوهش بررسی کارآمدی شبکه عصبی مصنوعی (ANN) در شبیه سازی اینن فرآیند بود. به این منظور حوضه کارده(واقع در شمال شرقی خراسان) برگزیده شد و هیتوگراف های چندین پیشامد بازندگی و آبنمودهای رواناب آنها مبنای کار قرار گرفت. سپش شبکه عصبی مصنوعی از نوع پس انتشار با تابع فعالیت سیگموئید آموزش داده شد. معیار گزینش پارامترهایی آموش شبکه، تولید کمترین مقدار (RMSE) بود. نتایج نشان داد که با قانون آموزش دلتا شبکه پرسپترون چند لایه دارای یک لایه پنهان، فرآیند بارش-رواناب را با دقت خوبی شبیه سازی نمود.(p < 0/0001 ). ضریبهمبستگی کل داده های دبی و حجم رواناب واقعی و شبیه سازی شده، 0/969 بدست آمد. همچنین ANN مقدار و زمان دبی های اوج را به خوبی برآورد کرد( ضریب همبستگی به ترتیب 0/9782 و 0/9052 بود) در مورد آبنمودهای دارای زمان اوج کمتر نسبت به دیگر آبنمودها، پیش بینی شبکه با تاخیر 1 تا 2 ساعت انجام گرفت با برگزیدن اندازه بزرگتر چرخه آموزش سرعت آموزش شبکه کندتر شداما دقت آن بهبود یافت.

کلیدواژه ها

شبیه سازی بارش-رواناب ، شبکه عصبی مصنوعی ، حوضه کارده

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.