Application of GK Fuzzy Clustering Method for PVT Analysis of Gas Condensate Reservoirs
- سال انتشار: 1390
- محل انتشار: هفتمین کنگره ملی مهندسی شیمی
- کد COI اختصاصی: ICHEC07_643
- زبان مقاله: انگلیسی
- تعداد مشاهده: 846
نویسندگان
Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box ۱۱۳۶۵-۹۴۶۵, Tehran, Iran
Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box ۱۱۳۶۵-۹۴۶۵, Tehran, Iran
Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box ۱۱۳۶۵-۹۴۶۵, Tehran, Iran
چکیده
In this work Gustafson-Kessel (GK) FCM algorithm was implemented and its effectiveness in handling high dimensional data was revealed. This algorithm associates each data point in the dataset with every cluster using an optimized membership function. GK forms a generalization of theFCM algorithm by utilizing the Mahalanobis distance for non-spherical clusters. In this clusteringalgorithm, components are placed in the hyper-component along with simultaneous calculation ofcritical and thermo-physical properties. Four case studies were selected for the characterization inPVT analysis of gas condensate reservoir fluids. The mixture composition and properties of the gas condensate samples of reliable published data are used. The automatic placement of components in each group is consistent with previous schemes those have highly heuristic natureof pseudo-component generation. The perfect agreement between detailed and clustered PVTanalysis, shows good predicting capability of this clustering algorithm in mixture characterizationand pseudo-component generation to simulate thermodynamic equilibrium and volumetric behavior in PVT experiment designed for gas condensate reservoir including prediction of condensed liquid dropout, densities, viscosities and saturation pressureکلیدواژه ها
Fluid Characterization, Gustafson-Kessel algorithm, PVT Analysis, Hyper-Component Generation, Gas Condensate Reservoirsمقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.