Classification of emotional speech through spectral pattern features
- سال انتشار: 1392
- محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 2، شماره: 1
- کد COI اختصاصی: JR_JADM-2-1_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 893
نویسندگان
Faculty of Electrical & Computer Engineering, Semnan University, Iran.
Faculty of Electrical & Computer Engineering, Semnan University, Iran.
Department of Electrical Engineering and Robotics, Shahrood University of technology, Iran.
Faculty of Electrical & Computer Engineering, Semnan University, Iran.
چکیده
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition are proposed. These features extracted from the spectrogram of speech signal using image processing techniques. For this purpose, details in the spectrogram image are firstly highlighted using histogram equalization technique. Then, directional filters are applied to decompose the image into 6 directional components. Finally, binary masking approach is employed to extract SPs from sub-banded images. The proposed HEs are also extracted by implementing the band pass filters on the spectrogram image. The extracted features are reduced in dimensions using a filtering feature selection algorithm based on fisher discriminant ratio. The classification accuracy of the proposed SER system has been evaluated using the 10-fold cross-validation technique on the Berlin database. The average recognition rate of 88.37% and 85.04% were achieved for females and males, respectively. By considering the total number of males and females samples, the overall recognition rate of 86.91% was obtainedکلیدواژه ها
Speech emotion recognition, spectral pattern features, harmonic energy features, cross validationمقالات مرتبط جدید
- سودآوری مشتریان در خردهفروشی قطعات یدکی ماشین آلات راهسازی با رویکرد یادگیری ماشین
- ارائه روشی کارآمد جهت شناسایی کودکان نیازمند به پیوند مغز استخوان با استفاده از ترکیب طبقه بند ماشین بردار پشتیبان و الگوریتم بهینه سازی فاخته
- استخراج بهینه پارامترهای تاثیر گذار الگوریتم بهینه سازی بوفالوی آفریقایی با هدف استخراج ویژگی های مهم به منظور افزایش کارایی طبقه بندی داده ها
- ارائه روشی کارآمد برای بهبود عملکرد الگوریتم بهینه سازی کلاغ سیاه به منظور افزایش صحت خوشه بندی داده ها
- استفاده از الگوریتم باور بیزین در لایه کاملا متصل شبکه عصبی کانولوشن با هدف افزایش دقت تشخیص تصاویر
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.