Soil Compaction Characteristics Modeling using Adaptive Neuro-fuzzy Inference System

  • سال انتشار: 1393
  • محل انتشار: اولین کنفرانس ملی مکانیک خاک و مهندسی پی
  • کد COI اختصاصی: SMFE01_263
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1041
دانلود فایل این مقاله

نویسندگان

Danial Jahed Armaghani

Ph.D Student, Dept. of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, ۸۱۳۱۰, UTM, Skudai, Johor, Malaysia.

Mohsen Hajihassani

Postdoctoral Fellow, Construction Research Alliance, Universiti Teknologi Malaysia, ۸۱۳۱۰ UTM Skudai, Johor, Malaysia

Koohyar Faizi

Researcher, Dept. of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, ۸۱۳۱۰, UTM, Skudai, Johor, Malaysia.

چکیده

Soil should be compacted to a desired density and water content in the construction of geotechnical structures. In other projects such as earth dams and compacted soil liners for containing contaminated solid and liquid wastes, the soil should be compacted for the density as well as the permeability requirements. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model to predict optimum moisture content (OMC) in different soil. To generate this model, a database consisting of 55 compaction test results was prepared and several ANFIS models were constructed to obtain the best one. Some statistical criteria consisting of root mean square error and coefficient of determination were used to check the model accuracy. In the ANFIS model, fineness modulus (FM), uniformity coefficient (U) and plastic limit (PL) were considered as model inputs. In ANFIS modelling, 44 datasets were considered for training purpose and 11 datasets were set for testing the model. The results indicate that the proposed ANFIS model is able to predict soil compaction characteristics with high degree of accuracy.

کلیدواژه ها

Soil compaction, optimum moisture content, adaptive neuro-fuzzy inference system

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.