Intelligent reservoir characterization using fuzzy logic: an example from the Kangan and Fahlian carbonate reservoirs in Southern Iran hydrocarbon Fields

  • سال انتشار: 1385
  • محل انتشار: اولین کنگره مهندسی نفت ایران
  • کد COI اختصاصی: IPEC01_075
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 2767
دانلود فایل این مقاله

نویسندگان

Ali Kadkhodaie Ilkhchi

P.H.D student in petroleum Geology, School of Geology, University of Tehran, Tehran Iran

Mohammadreza Rezaee

Associate Professor of Petroleum Geology, School of Geology, University of Tehran, Tehran, Iran

Seyed Ali Moallemi

Head of Petroleum Geology Department, Research Institute of Petroleum Industry, Teran, iran

Nilofar Masoodi

MSc.Student in peroleum Geology Olom va Tahghighat Branch, Islamic Azad University, Tehran, Iran

چکیده

pereability and rock types are the most important rock properties which can be used as input parameters to build 3D petrophysical models of hydrocarbon reservoir. As well as, log data of prime importance in acquring petrophysical data from hydrocabon reservoir. Reliable log analysis in the hydrocarbon resevoir requires a compelet set of logs. For any number of reasons such as incomplete logging in old wells, destruction of logas due to inappropriate data storage, and measurement errors due to logging tool problems hole conditions, log suites are either incomplete or not reliable. In this study, a fuzzy c-means (FCM) clustering technique was use to rock types classification based on porosity and permeability data. Then base on fuzzy inference system. Then a back propagationneural network with trainlm training function was applied to verify fuzzy results for permeability modeling. For this purpose, two wells of the Southern Iran Fields were chosen to construct intelligent models of the reservoir and a third well was used as a test well to evaluate the reliability of the models. The results of this study showed that fuzzy logic approach was successful for prediction of well logs, permeability and rock type in the studied reservoirs.

کلیدواژه ها

rocktypes, permeability, well logs, fuzzy logic, fuzzy c-means clustering, back propagation neural network, carbonate reservoir

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.