A Novel Continuous KNN Prediction Algorithm to Improve Manufacturing Policiesin a VMI Supply Chain

  • سال انتشار: 1393
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 27، شماره: 11
  • کد COI اختصاصی: JR_IJE-27-11_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1156
دانلود فایل این مقاله

نویسندگان

m Akhbari

Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran

y Zare Mehrjerdi

Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran

h Khademi Zare

Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran

a Makui

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده

This paper examines and compares various manufacturing policies which a manufacturer may adopt soas to improve the performance of a supply chain under vendor managed inventory (VMI) partnership.The goal is to maximize the combined cumulative profit of supply chain while minimizing the relevantinventory management costs. The supply chain is a two-level system with a single manufacturer singleretailer at each level, in which the manufacturer takes the responsibility of overall inventories of supplychain. A base system dynamics (SD) simulation model is first employed to describe the dynamicinteractions between the variables and parameters of manufacturer and retailer under VMI. Then, thementioned policies are constructed using the base SD model that lead us to differentiate the behavior ofsupply chain members for each policy within the same duration of time. In this paper, we usecontinuous K-nearest neighbor (CKNN) as one of the instance-based learning methodologies to predictthe best manufacturing rates. This algorithm effectively increases the combined profit of supply chainin comparison with other two policies discussed in this study. Accordingly, a numerical example alongwith a number of sensitivity analyses are conducted to evaluate the performance of proposed policies

کلیدواژه ها

Vendor Managed InventoryContinuous K-nearest NeighborLearning, System Dynamics

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.