Generating Functions for Pr1 (n) and Pr2 (n)
- سال انتشار: 1393
- محل انتشار: فصلنامه روشهای تصفیه محیط، دوره: 2، شماره: 2
- کد COI اختصاصی: JR_JETT-2-2_004
- زبان مقاله: انگلیسی
- تعداد مشاهده: 681
نویسندگان
Senior Lecturer, Department of Mathematics. Raozan University College, Bangladesh
Premier University, Chittagong, Bangladesh.
چکیده
In 1970 George E. Andrews defined the generating functions for P r1 (n) and Pr2 (n) . In this article these generating functions are discussed elaborately. This paper shows how to prove the theorem P r2 (n)= P r3(n) with a numerical example when n = 9 and r = 2. In 1966 Andrews defined the terms A'(n) and B'(n), but this paper proves the remark A'(n)= B'(n) with the help of an example when n = 10. In 1961 N. Bourbaki defined the term P(n,m) . This paper shows how to prove a Remark in terms of P(n,m) , where P(n,m) is the number of partitions of the type of enumerated by P r3 (n) with the further restrictions that b1 < = 2m .کلیدواژه ها
Generating functions, number of partitionsمقالات مرتبط جدید
- مطالعه اثر تخریب جنگل در ارزش خدمات تنظیمی بوم سازگان
- ارزیابی کمی برنامه احیا و توسعه جنگل در کشور و اهمیت خدمات بوم سازگانی این جنگل ها
- ادغام خدمات بوم شناختی در ارزیابی اثرات محیط زیستی: چارچوب ها، چالش ها و راهکارها
- مرور سیستماتیک بر مطالعات مدیریت پسماند شهری (مطالعه موردی: شهر رشت)
- کمی سازی و ارزش گذاری اقتصادی خدمت اکوسیستمی گردشگری ( مطالعه موردی: حرای خورخوران و قشم)
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.