ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

توسعه یک سیستم تشخیص مشتری تلفیقی مبتنی بر درخت رگرسیونی هرس شده و شبکه عصبی بهبود یافته

سال انتشار: 1389
کد COI مقاله: JR_IJIE-21-4_008
زبان مقاله: فارسیمشاهد این مقاله: 281
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 11 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله توسعه یک سیستم تشخیص مشتری تلفیقی مبتنی بر درخت رگرسیونی هرس شده و شبکه عصبی بهبود یافته

علیرضا سروش - دانشجوی دکتری مهندسی صنایع ، فنی و مهندسی ، دانشگاه تربیت مدرس
اردشیر بحرینی نژاد - استادیار مهندسی صنایع ، فنی و مهندسی ، تربیت مدرس

چکیده مقاله:

در دنیای رقابتی امروزی، شیوه های جذب مشتری یک از با اهمیت ترین حوزه های کاربردی داده کاوی بوده و پرواضح است که یکی از مهمترین ابعاد آن پیش بینی رفتار خرید مشتری است. زیرا ، پیش بینی خوب می تواند به توسعه استراتژی های بازاریابی دقیق تر و صرف کاراتر منابع کمک نماید. ایجاد یک سیستم تشخیص مشتری (CRS) به دلیل وجود تعداد زیادی ویژگی در دسترس طراح کاری بسیار مشکل است. به علاوه ، نیاز شدیدی به ایجاد یک CRS وجود دارد که همزمان پیچیدگی کم و قابلیت پیش بینی خوبی را داشته باشد . از اینرو ، مقصود این مقاله ، توسعه یک CRS تلفیقی (HCRS) است که از نظر محاسباتی کارا و اثربخش است . نوآوری مدل HCRS ، هم طراحی و هم پیاده سازی سیستم مذکور با ایجاد یک درخت رگرسیونی هرس شده (PRT) و طراحی یک شبکه عصبی پیشخوراند بهبود یافته (IFFNN) جهت افزایش سرعت ، دقت و کاهش پیچیدگی را شامل می شود. از آنجایی که ، شناسایی مشتریان یکی از دغدغه های صنعت بیمه است ، از داده های یک شرکت بیمه هلندی استفاده شده است . نتایج نشان داد که HCRS تنها 7٪ از ویژگی ها را در حالت بهینه انتخاب می کند که به میزان قابل توجهی هزینه محاسبات را کاهش می دهد. به علاوه ، نتایج نشان داد که PRT نسبت به روش منحنی مشخصه عملیاتی دریافت کننده کاراتر بوده و IFFNN نسبت به FFNN و PRT پیش بینی های دقیقتری را ارائه می کند.

کلیدواژه ها:

انتخاب ویژگی ،پیش بینی ، درخت گرسیونی هرس شده ، سیستم تشخیص مشتری ، شبکه عصبی بهبود یافته

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/281076/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
سروش، علیرضا و بحرینی نژاد، اردشیر،1389،توسعه یک سیستم تشخیص مشتری تلفیقی مبتنی بر درخت رگرسیونی هرس شده و شبکه عصبی بهبود یافته،،،،،https://civilica.com/doc/281076

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1389، سروش، علیرضا؛ اردشیر بحرینی نژاد)
برای بار دوم به بعد: (1389، سروش؛ بحرینی نژاد)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 28,369
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی