Unsupervised Learning of Categories with Local Feature Sets of Image

  • سال انتشار: 1391
  • محل انتشار: اولین کنفرانس بازشناسی الگو و پردازش تصویر ایران
  • کد COI اختصاصی: IPRIA01_149
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1059
دانلود فایل این مقاله

نویسندگان

Razieh Khamseh Ashari

Electrical and Computer Engineering Department of Isfahan University of Technology

Maziar Palhang

Electrical and Computer Engineering Department of Isfahan University of Technology

چکیده

By an increase in the volume of image data in the age of information, a need for image categorization systems is greatly felt. Recent activities in this area has shown that theimage description by local features, often has very strong similarities among local partials of an image, but these methodsare also challenging, because the use of a set of vectors for each image does n ot p ermit the d irect u se o f most o f t he c ommonlearning methods and distance functions. On the other hand,measuring the created similarities of the collection of unordered features is also problematic, because most of the proposedmethods have rather high time complexities computationally. In this article, a unsupervised learning method of categorization of objects from a collection of unlabeled images is introduced. Each image is described by a set of unordered local features and clustering is performed on the basis of partial similarities existing among these sets of features. For this purpose, by the use of pyramid match algorithm, the set of thefeatures are mapped in multi-resolution histograms and two sets of feature vectors in time-line are calculated in this newdistance. These similarities are employed as a criterion distance among the patterns in hierarchical clustering; therefore, thecategorization of objects by the use of common learning methodsis performed with acceptable accuracy and faster than the existing algorithms.

کلیدواژه ها

Computer vision, unsupervised learning, Categorization of objects, Pyramid match algorithm, Hierarchical clustering

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.