Application of Multi-Objective optimization algorithm and Artificial Neural Networks at machining process
- سال انتشار: 1391
- محل انتشار: اولین کنفرانس بازشناسی الگو و پردازش تصویر ایران
- کد COI اختصاصی: IPRIA01_015
- زبان مقاله: انگلیسی
- تعداد مشاهده: 1233
نویسندگان
Department of Mechanical engineering, University of Birjand, Birjand
Department of Mechanical engineering, University of Birjand, Birjand
Department of Electrical and computer engineering, University of Birjand, Birjand, Iran and School of Computer Science, McGill University, Montreal, Quebec, Canada
چکیده
Since, experimentally investigation of machining processes is difficult and costly, the problem becomes more difficult if the aim is simultaneously optimization of themachining outputs. This paper presents a novel hybrid method based on the Artificial Neural networks (ANNs), Multi-ObjectiveOptimization (MOO) and Finite Element Method (FEM) forevaluation of thermo-mechanical loads during turning process. After calibrating controllable parameters of simulation bycomparison between FE results and experimental results of literature, the results of FE simulation were employed fortraining neural networks by Genetic algorithm. Finally, the functions implemented by neural networks were considered as objective functions of Non-Dominated Genetic Algorithm (NSGAII) and optimal non-dominated solution set were determined at the different states of thermo-mechanical loads. Comparisonbetween obtained results of NSGA-II and predicted results of FE simulation showed that, developed hybrid technique of FEMANN-MOO in this study provides a robust framework for manufacturing processes.کلیدواژه ها
Intelligent methods, Hybrid technique,Machining processمقالات مرتبط جدید
- NSO: Natural Selection Optimization for Adaptive k-Nearest Neighbor Imputation
- Statistical Model for Determining Maximum Stress in Coronary Vessel Walls caused by Palmaz-Schatz Stent
- Comparison of CNN, LSTM and Their Hybrid Models in Detecting Coronavirus Using Genome Sequences
- Low-light Image Enhancement Using Deep Neural Network: An Improvement on ZeroDCE++
- Stuctered Light ۳D Reconstruction by Charuco
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.