Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

  • سال انتشار: 1392
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 26، شماره: 5
  • کد COI اختصاصی: JR_IJE-26-5_009
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 894
دانلود فایل این مقاله

نویسندگان

j akbari

Department of civil engineering, Malayer University, Malayer, Iran

n rakhshan

Graduated of structural engineering

m ahmadvand

Graduated of structural engineering

چکیده

Calculation of torsional strength of reinforcement concrete members due to the lacks of the theory of elasticity is a difficult task. Therefore, the finite element analysis could be applied to determination ofstrength of concrete beams. As well, for modeling of complicated, highly nonlinear and ambiguousphenomena, artificial neural networks (ANN) are appropriate tools. The main purpose of this paper is an evaluation of ultimate torsional strength of rectangular concrete beams. A three-dimensional finiteelement model (FEM) along with establishing the artificial neural network is used for achieving thisaim. The finite element model utilizes the brittle failure criterion for concrete fracture, and experimental data are applied for training of the ANN.The commercial software is used for numerical modeling, and existing experimental tests are used in validation of the proposed failure criterion. In order to apply the data for training of the network, they are divided into three categories: training, testing and validating data. For training of the proposed network, three-layer perceptron network with a back propagation error algorithm is used. Comparison of accuracies for applied failure criterion in the numerical modeling, and neural network predictions are carry out using the experimental tests.

کلیدواژه ها

Ultimate Torsional Strength,Finite Element Modeling,Brittle Failure Criterion,Artificial Neural Network,Concrete Reinforcement Beams

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.