Using Neural Network and Genetic Algorithm for Modeling and Multi-objective Optimal Heat Exchange through a Tube Bank

  • سال انتشار: 1391
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 25، شماره: 4
  • کد COI اختصاصی: JR_IJE-25-4_029
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 815
دانلود فایل این مقاله

نویسندگان

n Amani Fard

Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran

a Hajiloo

Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran

n Tohidi

Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran

چکیده

In this study, a multi-objective optimization technique was applied to predict the optimal design points of forced convective heat transfer in tubular arrangements upon the size, pitch and geometricconfigurations of a tube bank. It was used to gain the wide range of design point candidates, a novelmulti-objective and variable prediction model. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a minimum pressure loss. Gathering the required wide range of set of design information, anumerical simulation of various configurations of the elliptic tubular arrangements was performed using the FLUENT software. Afterwards, the group method of data handling (GMDH)-type neural network and the evolutionary algorithm (EAs) were used to model the effects of design parameters, i.e.horizontal diameter of ellipse (a), vertical diameter of ellipse (b), transverse pitch (Sn), and longitudinal pitch (Sp) on pressure loss (ΔP) and the temperature difference (ΔT) to achieve a meta- model through a prediction procedure using evolved GMDH neural network. Finally, the model was used to gain the multi-objective Pareto-curves to depict the optimal design zones

کلیدواژه ها

Tube Bank,CFD,GMDH,Multi-objective Optimization,GA

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.