Dust Level Forecasting and its Interaction with Gaseous Pollutants Using Artificial Neural Network: A Case Study for Kermanshah, Iran

  • سال انتشار: 1392
  • محل انتشار: فصلنامه انرژی و محیط زیست ایران (ایرانیکا)، دوره: 5، شماره: 1
  • کد COI اختصاصی: JR_IJEE-5-1_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1077
دانلود فایل این مقاله

نویسندگان

a.a Zinatizadeh

Department of Applied Chemistry,Faculty of Chemistry, Razi University, Kermanshah, Iran

m Pirsaheb

Health Research Center (KHRC), Kermanshah University of Medical Science, Iran

a.r Kurdian

Faculty of Chemical Engineering,Sahand University of technology, Sahand New Town, East Azerbaijan, Iran

s Zinadini

Department of Applied Chemistry,Faculty of Chemistry, Razi University, Kermanshah, Iran

چکیده

An artificial neural network (ANN) was used to forecast natural airborne dust as well as five gaseous air pollutants concentration by using a combination of daily mean meteorological measurements and duststorm occurrence at a regulatory monitoring site in Kermanshah, Iran for the period of 2007-2011. We used localmeteorological measurementsand air quality data collected from three previous days as independent variablesand the daily pollutants records as the dependent variables (response). Neural networks could be used todevelop rapid air quality warning systems based on a network of automated monitoring stations. Robustnessof constructed ANN acknowledged and the effects of variation of input parameters were investigated. As a result, dust had a decreasing impact on the gaseous pollutants level. The prediction tests showed that theANN models used in this study have the high potential of forecasting dust storm occurrence in the regionstudied by using conventional meteorological variables.

کلیدواژه ها

Artificial neural network Dust Gaseous pollutants Forecasting model

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.