Evaluate and Control the weld quality, Using Acoustic data and Artificial Neural Network Modeling
- سال انتشار: 1392
- محل انتشار: کنفرانس ملی مهندسی مکانیک ایران
- کد COI اختصاصی: NCMII01_414
- زبان مقاله: انگلیسی
- تعداد مشاهده: 1154
نویسندگان
M.sc. Student Department of Mechanical Engineering, Ferdowsi University of Mashhad (FUM), ۹۱۷۷۹۴۸۹۷۴, Mashhad, Iran
PHD Student, Ferdowsi University of Mashhad (FUM
Associate Professor Department of Mechanical Engineering, Ferdowsi University of Mashhad (FUM), ۹۱۷۷۹۴۸۹۷۴, Mashhad, Iran
چکیده
The weld quality depends on many factors and parameters such as continuity of the weld, the weld penetration and the absence of defects in the weld. All these parameters have to be after the welding process (Off-line) examined. Since Welding sound signal is an important feedback, In this research it is used as a (On-line) Criterion to determine the weld quality. The purpose of this investigation is to evaluate and control the weld quality using acoustic parameters as input and Weld quality parameter as output in an artificial neural network. For this purpose, acoustic parameters welding process (The difference between the maximum and average sound intensity, The Average of Fast Fourier Transform – FFT coefficients and Standard deviation of FFT coefficients) as inputs and weld quality parameter (the percentage of weld quality) that is given by non-destructive testing and welding inspection, is considered as an output. The selection process for this study is The gas-shielded welding process (MIG), One of the most commonly used types of welding.Acoustic signals is recorded in the laboratory during the welding process. Acoustic parameters of the process is extracted by the signal processing. Weld quality parameter, also by Welding Inspection and Testing the quality of welded joints is determined. Finally, The relationship between acoustic parameters and weld quality parameter can be studied with the help of neural network modeling. After data analysis and prediction models, the results are presentedکلیدواژه ها
Metal inert gaz (MIG), Acoustic data, Fast Fourier Transform ( FFT), On-line Criterion, Artificial Neural Network (ANN), Signal processingمقالات مرتبط جدید
- توسعه مبدل حرارتی داخلی ( IHX ) از طریق تغییر فرآیند ساخت و تولید لوله های گاز کولر در صنعت خودروسازی
- بهبودعملکرد سیکل تبرید تراکمی با تغییر فرآیند ساخت مبدل SLHX از آرایش مماسی به هم مرکز
- بررسی تاثیر لایه میانی روی در اتصال غیر مشابه آلیاژ پایه منیزیم AZ۳۱ و آلومینیوم ۶۰۶۱ به روش جوشکاری اصطکاکی اغتشاشی نقطهای
- بررسی تجربی سوراخکاری کامپوزیتهای پلیمری: مقایسه جوت و شیشه
- سیستم هوشمند پایش وضعیت بلبرینگ با استفاده از طیفنگاره صوتی جهت طبقهبندی و تشخیص خطای بلبرینگ ها
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.