Integrating smart card data and environmental factors in public transportation management: A machine learning-based framework for Mashhad

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 7

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICISE11_081

تاریخ نمایه سازی: 8 آذر 1404

چکیده مقاله:

Smart cities have emerged as a solution to urban challenges such as population growth, air pollution, traffic congestion, and resource depletion. A key component of these cities is intelligent transportation systems, which leverage advanced technologies and big data to enhance the efficiency, sustainability, and accessibility of public transport. This study investigates the integration of smart card data and environmental factors such as weather, air quality, events, and land use in public transportation management in Mashhad, Iran. By applying data mining and machine learning techniques, we develop a data-driven framework capable of identifying travel patterns, predicting demand, and optimizing operational planning. The findings demonstrate that combining smart card data with environmental variables significantly improves prediction accuracy, enabling more data-informed decision- making in transport management and urban planning

کلیدواژه ها:

Estimation of Origin-Destination (OD) ، Trip Chain Model (TCM) ، Smart Card Data (SCD) ، Predicting Public Transport Trip Demand ، Spatial and Temporal Variables

نویسندگان

Shariat Radfar

Department of Industrial Engineering Na.C, Islamic Azad University Najafabad, Ira

Hamidreza Koosha

Department of Industrial Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Ali Gholami

Department of Civil Engineering Golestan University Gorgan, Iran