Integrating smart card data and environmental factors in public transportation management: A machine learning-based framework for Mashhad
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 7
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE11_081
تاریخ نمایه سازی: 8 آذر 1404
چکیده مقاله:
Smart cities have emerged as a solution to urban
challenges such as population growth, air pollution, traffic
congestion, and resource depletion. A key component of these
cities is intelligent transportation systems, which leverage
advanced technologies and big data to enhance the efficiency,
sustainability, and accessibility of public transport. This study
investigates the integration of smart card data and
environmental factors such as weather, air quality, events, and
land use in public transportation management in Mashhad,
Iran. By applying data mining and machine learning techniques,
we develop a data-driven framework capable of identifying
travel patterns, predicting demand, and optimizing operational
planning. The findings demonstrate that combining smart card
data with environmental variables significantly improves
prediction accuracy, enabling more data-informed decision-
making in transport management and urban planning
کلیدواژه ها:
Estimation of Origin-Destination (OD) ، Trip
Chain Model (TCM) ، Smart Card Data (SCD) ، Predicting Public
Transport Trip Demand ، Spatial and Temporal Variables
نویسندگان
Shariat Radfar
Department of Industrial Engineering Na.C, Islamic Azad University Najafabad, Ira
Hamidreza Koosha
Department of Industrial Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Ali Gholami
Department of Civil Engineering Golestan University Gorgan, Iran