Applying Ensemble Learning Methods for Customer Response Modeling Considering Expected Profitability
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 0
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE11_074
تاریخ نمایه سازی: 8 آذر 1404
چکیده مقاله:
In today's data, including world, diverse customer demographic and behavioral information, enable companies to implement targeted marketing strategies. However, time and financial constraints make it impractical to reach all customers, and not all customers contribute equally to business value. This study proposes a profit-oriented ensemble approach for improving customer response modeling and prediction, where the 'profit' variable, defined according to each customer's individual value, is directly integrated into model training. The ensemble employs a neural network as the Meta learner, with backpropagation applied for weight updates. To address class imbalance in the target variable, observation weighting is incorporated. The model was evaluated on two public banking datasets and compared with traditional methods. Results indicate that the average profit from correctly predicted positive responses increased from ۱۹.۲۵ to ۲۴.۲۶ for the first dataset, and from ۵۸۸.۱۸ to ۷۱۳.۲۷ for the second dataset. These findings underscore the potential of profit-oriented ensemble modeling to enhance the effectiveness of marketing campaigns.
کلیدواژه ها:
نویسندگان
Elham Gholipoor
Department of Industrial Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Hamidreza Koosha
Department of Industrial Engineering, Ferdowsi University of Mashhad, Mashhad, Iran